Peluang Kejadian
Peluang suatu kejadian A sama dengan jumlah terjadinya kejadian A dibagi dengan seluruh yang mungkin.
P(A) = k / n
Dimana
k : jumlah terjadinya kejadian A
n : jumlah seluruh yang mungkin
Jika kita melakukan percobaan, maka himpunan semua hasil disebut Ruang Sampel
Contoh:
1. Percobaan melempar uang logam 3 kali.
A adalah kejadian muncul tepat dua muka berturut-turut.
Maka :
S = {mmm,mmb,mbm,mbb, bmm, bmb, bbm, bbb}
A = {mmb, bmm}
n(S) = 23 = 8
n(A) = 2
P(A) = 2/8 = 1/4
2. Percobaan melempar dadu satu kali.
A adalah kejadian muncul sisi dengan mata dadu genap.
Maka :
S = {1,2,3,4,5,6}
A = {2,4,6}
n(S) = 6
n(A) = 3
P(A) = 3/6 = 1/2
Jika peluang terjadinya A adalah P(A) dan peluang tidak terjadinya A adalah P(A) maka berlaku
_
P(A) + P(A) = 1
Contoh:
Dari setumpuk kartu Bridge yang terdiri dari 52 kartu diambil 1 kartu. Berapakah peluang kartu yang terambil bukan kartu King?
Jawab:
P (King) = 4/52 = 1/13
P bukan King = 1 - 1/13 = 12/13
Peluang Kejadian Bebas dan Tak Bebas
Dua kejadian A dan B dikatakan bebas jika dan hanya jika
P(AÇB) = P(A). P(B)
Contoh:
Dalam tas I terdapat 4 bola putih dan 2 bola hitam. Dalam tas II terdapat 3 bola putih dan 5 bola hitam.
Sebuah bola diambil dari masing-masing tas.
a) Keduanya berwarna putih
b) Keduanya berwama hitam
Jawab:
Misal
A = bola putih dari tas I
B = bola putih dari tas II
P(A) = 4/6
P(B) = 3/8
_ _
P(A) = 2/6 P(B) = 5/8
a. P(AÇB) = P (A) . P (B) = 4/6 . 3/8 = 1/4
_ _ _ _
b. P((A) Ç P(B)) = P(A). P(B) = 2/6 . 5/8 = 5/24
DEFINISI
Jika A dan B dua kejadian yang saling asing maka berlaku :
P (AUB) = P(A) + P(B)
Contoh:
Pada pelemparan sebuah dada merah (m) dan sebuah dadu putih (p).
Maka: S={(1,1), (1,2), .....,(1,6), (2,1),(2,2),.....(6,6)}
n(S) - (6)2 = 36
A : Kejadian muncul m + p = 6 ® {(1,5) (2,4) (3,3) (4,2) (5,1)}
n(A) = 5
B : Kejadian muncul m + p = 10 ® {(4,6), (5,5), (6,4)}
n(B) = 3
P(A) = 5/36 P(B) = 3/36
AUB :Kejadian muncul m + p = 6 atau m + p = 10 ®
{ (1,5) (2,4) (3,3) (4,2) (4,6) (5,1) (5,5) (6,4) }
n(AUB) = 8
P(AUB) = 8/36 = P(A) + P(B)
A dan B kejadian yang saling asing.
Barisan
Jika A dan B dua kejadian yang tidak saling asing maka berlaku
P(AUB) = P(A) + P(B) - P(AÇB)
Contoh:
Dalam pelemparan sebuah dada S : { 1, 2, 3, 4, 5, 6}
A : Kejadian muncul sisi dengan banyaknya mata dadu bilangan ganjil = { 1, 3, 5 } ® n(A) = 3/6
B : Kejadian muncul sisi dengan banyaknya mata dadu bilangan prima = {2, 3, 5} ® n(B) = 3/6
P(AUB) = 4/6 = P(A) + P(B)
A dan B kejadian yang tidak saling asing
BARISAN adalah urut-urutan bilangan dengan aturan tertentu.
Suku-suku suatu barisan adalah nilai-nilai dari suatu fungsi yang daerah definisinya himpunan bilangan asli (n = natural = asli)
Contoh:
adalah suku ke-n dari suatu barisan, dimana n Î N = {1,2,3,.....}
Barisan itu adalah : 1,3,5,7,....
Rumus suku ke-n barisan ini adalah Un = 1/3n
U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta
Selisih ini disebut juga beda (b) = b =Un - Un-1
Suku ke-n barisan aritmatika a, a+b, a+2b, ......... , a+(n-1)b
U1, U2, U3 ............., Un
Rumus Suku ke-n :
Un = a + (n-1)b = bn + (a-b) ® Fungsi linier dalam n
a + (a+b) + (a+2b) + . . . . . . + (a + (n-1) b) disebut deret aritmatika.
a = suku awal
b = beda
n = banyak suku
Un = a + (n - 1) b adalah suku ke-n
Jumlah n suku
Sn = 1/2 n(a+Un)
= 1/2 n[2a+(n-1)b]
= 1/2bn² + (a - 1/2b)n ® Fungsi kuadrat (dalam n)
Keterangan:
- Beda antara
dua suku yang berurutan adalah
tetap (b = Sn")
- Barisan
aritmatika akan
naik
jika
b > 0
Barisan aritmatika akan turun jika b < 0
-
Berlaku hubungan Un = Sn - Sn-1
atau Un = Sn' - 1/2 Sn"
-
Jika banyaknya suku ganjil, maka
suku tengah
Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1) dst.
- Sn
= 1/2 n(a+ Un) = nUt ®
Ut
= Sn / n
- Jika tiga bilangan membentuk suatu barisan aritmatika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a - b , a , a + b
PENGGUNAAN
Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)
M0, M1, M2, ............., Mn
M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0
M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0
.
.
.
.
Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0
Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)
M0, M1, M2, .........., Mn
M1 = M0 + P/100 . M0 = (1 + P/100) M0
M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0
= (1 + P/100)² M0
.
.
.
Mn = {1 + P/100}n M0
Keterangan :
M0 = Modal awal
Mn = Modal setelah n periode
p = Persen per periode atau suku bunga
n = Banyaknya periode
Catatan:
Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0).